Новая версия программно-методического комплекса *Ge Spectra Analysi*s System – GeSAS для HPGe гамма-спектрометрического радионуклидного анализа

Результаты теста МАГАТЭ

«2014 IAEA High-Resolution Gamma Spectrometry Proficiency Test»

В.В Дровников, Н.Ю. Егоров, В.М. Живун, А.А. Кадушкин, В.В. Коваленко

Лаборатория «Ядерно-физические технологии радиационного контроля» телефон: 903 - 581- 85 - 33 e-mail: <u>egorov@radiation.ru</u> web-aдрес: <u>www.radiation.ru</u>

Программно-методический комплекс «Ge Spectra Analysis System» для прецизионного НРGе гамма-спектрометрического радионуклидного анализа (ПМК GeSAS)

Международные учения

радионуклидных лабораторий МСМ ДВЗЯИ, 2002 г.

Нуклид	Паспортные значения активности	GeSAS – значения активности
²¹⁰ Pb	335.0 ± 16.1	357 ± 21
¹²⁴ Sb	105.71 ± 3.45	99.9 ± 6.5
¹²⁵ Sb	7.05 ± 0.16	7.31 ± 0.52
¹⁵⁴ Eu	6.88 ± 0.18	7.00 ± 0.56
¹⁵⁵ Eu	6.81 ± 0.27	6.55 ± 0.62
²⁰⁷ Bi	12.80 ± 0.32	11.7 ± 0.8
¹³⁴ Cs	6.80 ± 0.15	6.88 ± 0.69
¹³⁷ Cs	6.78 ± 0.16	6.70 ± 0.29
²² Na	6.92 ± 0.08	7.52 ± 0.67

Из чего состоит пик в спектре

- пики полного поглощения
 пики истинных совпадений
 пики случайных совпадений
 пики одинарной утечки
- 4 пики двойной утечки

$$s_{k} - s_{fon}^{k} - s_{cn}^{k} = \frac{1}{K_{c}^{k}} \sum_{m=1}^{N_{N}} A_{m} \cdot \frac{Y_{m}(E_{k})}{K_{\tau}^{m}}$$

$$Y_m(E_k) = Y_{1m}(E_k) + Y_{2m}(E_k) + Y_{3m}(E_k)$$

 $m = 1, \dots N_N$ $N_N - кол-во нуклидов$ $k = 1, \dots N_P$ $N_P - кол-во пиков$

Учет эффектов каскадного суммирования, самопоглощения в образце, химического состава и распада за время измерения

$$Y_{1m}(E_{k}) = \sum_{j=1}^{N_{k_{1}}^{m}} P_{j}^{m} \cdot \varepsilon_{k} \cdot \frac{1}{1 + \alpha_{k}^{m}} \cdot \prod_{\substack{l=1\\l \neq k}}^{L_{j}^{m}} \left(1 - \frac{1}{1 + \alpha_{l}^{m}} \cdot \varepsilon_{lm}^{T}\right) \\ K_{c}^{k}(\rho, E_{k}) = \frac{1 - e^{-\mu(E_{k}) \cdot \rho \cdot H_{eff}}}{1 - e^{-\mu(E_{k}) \cdot \rho_{0} \cdot H_{eff}}} \cdot \frac{\rho_{0}}{\rho}$$

$$Y_{2m}(E_k) = \sum_{j=1}^{N_{k_2}^m} P_j^m \cdot \varepsilon_k \cdot \frac{1}{1 + \alpha_k^m} \cdot \varepsilon_{k_1}^m \cdot \frac{1}{1 + \alpha_{k_1}^m} \cdot \prod_{\substack{l=1\\l \neq k\\l \neq k_l}}^{L_j^m} \left(1 - \frac{1}{1 + \alpha_l^m} \cdot \varepsilon_{lm}^T \right)$$

$$K_{\tau}^{m} = \frac{\lambda_{m} \cdot t}{1 - e^{-\lambda_{m} \cdot t}}$$

$$Y_{3m}(E_{k}) = \sum_{j=1}^{N_{k_{3}}^{m}} P_{j}^{m} \cdot \varepsilon_{k} \cdot \frac{1}{1 + \alpha_{k}^{m}} \cdot \varepsilon_{k_{1}}^{m} \cdot \frac{1}{1 + \alpha_{k_{1}}^{m}} \cdot \varepsilon_{k_{2}}^{m} \cdot \frac{1}{1 + \alpha_{k_{2}}^{m}} \cdot \prod_{\substack{l=1\\l \neq k\\l \neq k_{1}\\l \neq k_{2}}}^{L_{j}^{m}} \left(1 - \frac{1}{1 + \alpha_{l}^{m}} \cdot \varepsilon_{lm}^{T}\right)$$

Коррекция чувствительностей для ¹³⁴Cs

Энергия, кэВ	Квантовый выход, %		Чувствительность, 1/ксек/Бк *1000		
	Табличное	Из схемы	Из кривой	С коррекцией	Измерения
	значение	распада	эффективности	совпадений	
475.36	1.49 ± 0.02	1.48	1.35 ± 0.05	0.83 ± 0.04	0.86 ± 0.10
563.25	8.39 ± 0.08	8.38	6.89 ± 0.22	4.00 ± 0.16	3.99 ± 0.24
569.33	15.38 ± 0.12	15.32	12.53 ± 0.40	7.26 ± 0.29	7.44 ± 0.38
604.72	97.62 ± 0.06	97.61	77.2 ± 2.5	55.0 ± 2.1	54.6 ± 2.8
795.86	85.53 ± 0.08	85.46	58.2 ± 2.0	42.8 ± 1.7	41.2 ± 2.1
801.95	8.69 ± 0.08	8.72	5.91 ± 0.20	3.65 ± 0.15	3.64 ± 0.20
1038.61	0.99 ± 0.01	1.00	0.577 ± 0.024	0.51 ± 0.03	0.50 ± 0.06
1167.97	1.79 ± 0.02	1.81	0.960 ± 0.040	1.14 ± 0.05	1.14 ± 0.09
1174.05	0	0	0	0.744 ± 0.036	0.770 ± 0.055
1365.18	3.012 ± 0.024	3.014	1.39 ± 0.07	2.03 ± 0.11	2.06 ± 0.13
1400.59	0	0	0	4.38 ± 0.21	4.26 ± 0.25
1406.67	0	0	0	0.29 ± 0.02	0.28 ± 0.03
1643.33	0	0	0	0.065 ± 0.004	0.046 ± 0.013
1969.92	0	0	0	0.26 ± 0.02	0.27 ± 0.03

Погрешности на уровне 95%.

Калибровка по эффективности в пике полного поглощения

2 - с учетом коррекции на каскадные совпадения гамма-квантов.

Контроль качества обработки спектра

Контроль качества обработки спектра

$$QF = \frac{\sum_{j=1}^{Np} W_j \cdot \left(s_j - s_{fon}^j - s_{cn}^j - \sum_{i=1}^{N_N} A_i \cdot \frac{Y_{ij}}{k_\tau^i}\right)^2}{N_p}$$

$$W_{m} = \frac{1}{\sigma_{s_{m}}^{2} + \sigma_{s_{fon}}^{2} + \sigma_{s_{cn}}^{2} + \sum_{i=1}^{N_{N}} \left(A_{i} \cdot \frac{Y_{im}}{k_{\tau}^{i}}\right)^{2} \cdot \left(u_{Y_{im}}^{2} + u_{k_{\tau}^{i}}^{2}\right)}$$

$$D_{j} = s_{j} - s_{fon}^{j} - s_{cn}^{j} - s_{N}$$

Параметры пика		×						
Положение	: 1451.96 ± 0. <mark>55</mark>	~						
Границы	: 1442.00 - 1458.00 ампл.	-						
	: 525.72 - 531.55 кэВ.	_						
Площадь	: 16553 ± 492							
Скорость счета	: 10.83 ± 0.32 1/cem							
Номинальная ПШПВ 💦	: 8.26 канала							
	3.01 кэВ							
ПШПВ	: 3.93 ± 0.15 канала							
	: 1.43 ± 0.06 кэВ							
пшдв	: 7.63 ± 0.40 канала							
	: 2.78 ± 0.14 кэВ							
Формфактор	: 1.065 ± 0.069							
Асимметрия на 0.5	: -0.037 ± 0.077							
Асимметрия на 0.1	: -0.106 ± 0.183							
Энергия	: 529.53 ± 0.11 кэВ							
Состав пика :								
	Фон 0.00 ± 0.00 1/ксек							
I-135 526.56	кэВ 1.80 ± 0.11 1/сек							
Tc-104 527.20	кэВ 0.04 ± 0.00 1/сек							
Ba-141 527.60	кэВ 0.02 ± 0.00 1/сек							
I-133 529.87	кэВ 7.44 ± 0.39 1/сек							
Tc-104 530.50	кэВ 1.46 ± 0.09 1/сек							
I-135 530.80	кэВ 0.00 ± 0.00 1/сек							
Tc-101 531.42	кэВ 0.10 ± 0.01 1/сек							
	ланс _0 02 + 0 52 1/сер							
дисоал	1010 -0.02 I 0.32 I/CEK	۷						
	OK							

Добавление радионуклидов в рабочую библиотеку

писок нукл	идов, н	е включенных в	рабочую библиот	гекч			Nb-94		
Нуклид	N	Все пики	Неидент. пики	Корреляция	Период полураспада		Е, кэВ	Чувств.	Епика
ND-94	3	2 (98.5 %)	0 (0.0 %)	0.96 ± 0.32	20.3 КилоЛет		702.62	24.108	700.7
5b-125	20	4 (73.0 %)	0 (0.0 %)	0.12 ± 0.17	1.01 КилоЛет		871.10	20.731	869.1
Br-82	72	5 (8.8 %)	0 (0.0 %)	0.09 ± 0.06	1.47 дн.		1573.72	0.672	
Љ-169	98	1 (19.4 %)	0 (0.0 %)	0.00 ± 0.07	32 дн.				
s-76	62	2 (0.1 %)	0 (0.0 %)	-0.03 ± 0.00	1.09 дн.				
Б-124	62	2 (5.5 %)	0 (0.0 %)	-0.04 ± 0.01	60.2 дн.				
Eu-156	81	3 (4.2 %)	0 (0.0 %)	-0.04 ± 0.02	15.2 дн.				
J-232e	133	8 (22.0 %)	0 (0.0 %)	-0.04 ± 0.04	68.9 ner				
lu-154m	84	3 (4.5 %)	0 (0.0 %)	-0.04 ± 0.01	46.2 MRH.				
-132	126	3 (0.1%)	1 (0.0 %)	-0.05 ± 0.00	2.3 wac.				
-133	36	1 (1.9 %)	0 (0.0 %)	-0.05 ± 0.00	20.8 yac.				
u-152m	63	5 (1.4 %)	0 (0.0 %)	-0.05 ± 0.00	9.31 wac.				
a-131	70	5 (0.1 %)	0 (0.0 %)	-0.05 ± 0.00	11.5 дн.				
a-182	123	3 (0.1 %)	0 (0.0 %)	-0.06 ± 0.00	114 дн.				
a-140	35	1 (2.3 %)	0 (0.0 %)	-0.06 ± 0.01	1.68 дн.				
r-97	28	3 (6.4 %)	1 (1.2 %)	-0.06 ± 0.01	16.7 wac.				
7-187	81	3 (0.5 %)	0 (0.0 %)	-0.06 ± 0.00	23.7 час.				
h-228e	53	3 (4.0 %)	0 (0.0%)	-0.07 ± 0.01	1.91 ner				
Ъ-160	71	3 (0.0%)	0 (0.0 %)	-0.07 ± 0.00	72.3 дн.				
e-144e	26	0 (0.0%)	0 (0.0%)	-0.07 ± 0.00	285 дн.				
lo-166	18	0 (0.0 %)	0 (0.0%)	-0.07 ± 0.00	1.12 дн.				
Ce-143	23	1 (4.1 %)	0 (0.0%)	-0.07 ± 0.00	1.38 дн.				
Am-243	53	2 (0.0 %)	0 (0.0 %)	-0.08 ± 0.00	7.37 КилоЛет				
Ru-103	10	0 (0.0%)	0 (0.0 %)	-0.08 ± 0.00	39.3 дн.				
le-131	79	21 14 91	1 (1 3 %)	-0 08 + 0 00	1 25 тж	_	1		
– Нуклид –		Ок 🔽 Эн	ергия от 👘 🗸	до кэВ	Ок 🗖 Период полураспада	от [до)	дн. 👻

Результаты теста МАГАТЭ «2014 IAEA High-Resolution Gamma Spectrometry Proficiency Test»

Участники теста

«2014 IAEA High-Resolution Gamma Spectrometry Proficiency Test»

- Atomic Weapons Establishment, United Kingdom
- IAEA Environmental Sampling Laboratory, Austria
- Japan Atomic Energy Agency
- Korea Atomic Energy Research Institute, Republic of Korea
- Los Alamos National Laboratory LANL, USA
- Lawrence Livermore National Laboratory LLNL, USA
- Oak Ridge National Laboratory ORNL, USA
- Pacific Northwest National Laboratory PNNL, USA.
- 🔹 Лаборатория анализа микрочастиц, Россия

2014 IAEA High-Resolution Gamma Spectrometry Proficiency Test

Внешний вид «тряпочки»

Паспортные данные

Нуклид	Активность, Бк
60CO	3.68 ± 0.26
¹³⁴ Cs	0.0735 ± 0.0077
¹³⁷ Cs	2.74 ± 0.16
¹⁵² Eu	0.143 ± 0.017
¹⁵⁴ Eu	1.96 ± 0.13
¹⁵⁵ Eu	3.40 ± 0.29
²⁴¹ Am	5.08 ± 0.32

Приготовление счетных образцов

На чем измеряли

Детектор #1: ORTEC GEM 30185-P Диапазон энергий: 50 кэВ ÷ 3000 кэВ Разрешение на 1332 кэВ: 1.95 кэВ Эффективность: 32%

Детектор #2: CANBERRA GL 3830 LBG Диапазон энергий: 3 кэВ ÷ 3000 кэВ Разрешение на 1332 кэВ: 2.05 кэВ Эффективность: 38%

Обработка экспериментальных данных: ПМК *GeSAS*

Результаты статистической обработки результатов измерений

🔽 z' < -3 U-235 :: 30123-03 zeta < -3 U-235 :: 30123-03 ▼ -3 <= z' < -2 ▼ -3 <= zeta < -2 • -2 <= z' <= 2 U-234 :: 30123-03 • -2 <= zeta <= 2 U-234 :: 30123-03 ▲ 2 < z' <= 3 ▲ 2 < zeta <= 3 ▲ 3<z' 🔺 3 < zeta Sb-125 :: 30123-02 Sb-125 :: 30123-02 Ru-106 :: 30123-02 Ru-106 :: 30123-02 Eu-155 :: 30123-01 Eu-155 :: 30123-01 Eu-154 :: 30123-03 Eu-154 :: 30123-03 Eu-154 :: 30123-01 Eu-154 :: 30123-01 Cs-134 :: 30123-02 Cs-134 :: 30123-02 Cs-134 :: 30123-01 Cs-134 :: 30123-01 Co-60 :: 30123-01 Co-60 :: 30123-01 Am-241 :: 30123-03 Am-241 :: 30123-03 Am-241 :: 30123-01 Am-241 :: 30123-01 В С D Ε G А Н D В С F F G Н А

Overall Test Summary: z'-scores

Overall Test Summary: zeta-scores

lab ID

lab ID

Спектры фона низкофоновых гамма-спектрометров с НРGе детекторами

e-mail: egorov@radiation.ru

web-aдpec: www.radiation.ru

Спектры фона низкофоновых гамма-спектрометров с НРGе детекторами

нил яфтрк

телефон: (499) 323-91-04

e-mail: egorov@radiation.ru

web-aдpec: www.radiation.ru

Спектры фона низкофоновых гамма-спектрометров с НРGе детекторами

телефон: (499) 323-91-04

e-mail: egorov@radiation.ru

web-aдpec: www.radiation.ru

Экспериментальные и теоретические исследования радиационных характеристик нефракционированных смесей продуктов деления. Справочник «Радиационные характеристики продуктов деления». Авторы: Н.Г. Гусев, В.В. Коваленко, В.М. Колобашкин, П.М. Рубцов.

Справочник «Бета-излучение продуктов деления». Авторы: В.М. Колобашкин, П.М. Рубцов, В.Г. Алексанкин, П.М. Ружанский.

Разработка аппаратурных и методических средств ДЛЯ исследования содержания радиоактивных благородных газов – радионуклидов криптона и ксенона, а также трития, в приземном слое атмосферы. Экспериментальные и теоретические исследования содержания радиоактивных благородных газов радионуклидов криптона и ксенона, а также трития, в приземном слое атмосферы. 1962 - 1992 г.г.

Государственная премия СССР 1982 года в области науки и техники.

- Разработка методов и средств низкофоновой HPGe гамма-спектрометрии для лабораторного радионуклидного анализа проб объектов окружающей среды регионов действующих и проектируемых АЭС РФ. 1990 -1995 г.г. Экспериментальные и теоретические исследования 1990 - 2000 г.г.
- Разработка методов и средств низкофонового HPGe гамма-спектрометрического радионуклидного анализа аэрозольных проб в Международной системе мониторинга Договора о всеобъемлющем запрещении испытаний ядерного оружия. 2001 - 2008 г.г.

- Исследование содержания гамма-излучающих радионуклидов и трития в различных компонентах экосистем регионов Калининской АЭС, Кольской АЭС, Курской АЭС, Смоленской АЭС, Билибинской АЭС и Нововоронежской АЭС (≈ 2500 образцов). 1992-1998 г.г.
- 4 Исследование радиационного состояния окружающей среды района Москворечье, обусловленного длительной эксплуатациейреактора ИРТ-2000 МИФИ. (≈ 320 образцов). 1998 г.
- Пробы воды и донных отложений морей Северного ледовитого океана, Японского, Черного и Балтийского морей. (≈ 800 образцов). 2002-2007 г.г.
- Пробы объектов окружающей среды промышленных подземных ядерных взрывов «Горизонт-4», «Кратон-3» и «Кристалл», проведенных на территории Якутии. (≈ 200 образцов). 2002-2004 г.г.
- Специальные работы. Прецизионная НРGе гамма-спектрометрия, в т.ч. низкофоновая, образцов, облученных тепловыми нейтронами.
 (≈ 2500 образцов). 2000-2007 г.г.
- Внедрение HPGe и Nal гамма-спектрометрических технологий на Нововоронежской АЭС (≈ 1300 образцов). 2008-2011 г.г.

Общий вид низкофонового многодетекторного НРGе гамма-спектрометра НИЛ ЯФТРК

The 2002 IAEA intercomparison of software for low-level γ-ray spectrometry

Dirk Arnold, Menno Blaauw, Stjepko Fazinic, Vladimir P. Kolotov

Nuclear Instruments and Method n Physics Research Volume 536, Issues 1-2, 1 January 2005, Pages 196-210.

All programs tested in this intercomparison were efficiency-curve-based, and *all failed in some respect* to accomplish their task, as shown in <u>Table 8</u>.

Table 8.

Partial or complete failure of the participating programs at various stages of the process

	Gamma-W	Genie 2000	Gamma- Vision	Inter- Winner	Hyper-lab	Uni- Sampo	Anges
Peak area determination							
Background correction			X		Х		
Interference correction	Х	Х	X	X	Х	X	Х
Coincidence summing effects when calibrating	Х	X		X	Х	X	X
Efficiency correction for sample self-attenuation	х		X	X	x	Х	x
Coincidence summing effects when analyzing	Х	X ª		X	X	Х	Х
Identification of radionuclides		X p	X	X		X Þ	

- ^a Partial failure due to absence of natural radionuclides in database that come with the program
- **b** Failure with respect to false hits due to inability to recognize sum peaks

Форматы спектров, с которыми работает ПМК GeSAS

- собственный формат
 SasGeSample (*.spa, *.spz)
- Ortec (*.chn, *.spe)
- Ortec GammaVision(*.spc)
- Canberra S100 (*.mca)
- Canberra Genie 2000 (*.cnf)
- AnGamma v3.3 (*.spc)
- LSRM (*.spe)

- 🧶 Гринстар (*.sps)
- SBS v4.0 (*.spr)
- Прогресс-2000 (*.spc)
- Спектр (*.anl, *.clb)
- ASCII IEC (*.iec)
- IAEA (*.spe)
- Aptec v6.(*.sp0)
- GammaMCA-8000(*.spk)

Цифровые спектрометры, с которыми работает ПМК GeSAS

● ЦСУ-ПН-02

Ortec DSPECPro

Canberra DSA 1000

Что нас не устраивает...

- Отсутствие единой идеологии при разработке и модернизации программ (создание дополнительных программных модулей и т.д.)
- Высокий уровень произвола при выборе параметров, используемых для обработки спектров
- Отсутствие объективных критериев качества выбора параметров и результатов обработки спектра
- Применение несовершенных и неоптимальных алгоритмов (одинаковые алгоритмы для обработки ППД и сцинтилляционных спектров и т.д.)
- Переход от площадей пиков к активностям через кривую эффективности
- Отсутствие возможности непосредственного использования экспериментальных данных в процессе обработки спектров
- Использование чисто расчетных методов для создания константного обеспечения спектрометра (учет каскадного суммирования и т.д.)
- Сложность практической реализации некоторых требований программ к подготовке входных данных (использование методики учета поглощения в образце и т.д.)

Международные учения

радионуклидных лабораторий МСМ ДВЗЯИ, 2002 г.

Нуклид	Паспортная	а активность	Активность, полученная при помощи программы GeSAS		
	А, Бк	±2σ, %	А, Бк	±2σ, %	
²¹⁰ Pb	335.01	4.80	357	6.0	
¹³⁷ Cs	6.78	2.30	6.70	4.4	
¹²⁴ Sb	105.71	3.26	99.9	6.5	
¹²⁵ Sb	7.05	2.22	7.31	7.1	
¹⁵⁴ Eu	6.88	2.62	7.00	8.0	
¹⁵⁵ Eu	6.81	3.94	6.55	9.5	
²⁰⁷ Bi	12.80	2.50	11.7	6.8	
¹³⁴ Cs	6.80	2.24	6.88	10	
²² Na	6.92	1.13	7.52	8.9	

О калибровке по эффективности в «близкой» геометрии

🔶 МИФИ Д5 🔶 ДЗ 🔺 Д2 🗖 Д6

Результаты метрологической экспертизы гамма-спектрометров на предприятиях 16 ГНТУ методом «темной» пробы, 1996 г.

Все результаты нормированы на 1.0 Условные обозначения: ө – европий-152; ▼– торий-232; + – цезий-137.

Overall Test Summary: z'-scores

lab ID

Overall Test Summary: zeta-scores

«Улучшение» энергетического разрешения

The 2002 IAEA intercomparison of software for low-level γ-ray spectrometry

Table 8. Partial or complete failure of the participating programs at various stages of the process

	Gamma-W	Genie 2000	Gamma- Vision	Inter- Winner	Hyper-lab	Uni- Sampo	Anges
Peak area determination							
Background correction			x		x		
Interference correction	x	x	x	x	x	x	x
Coincidence summing effects when calibrating	x	x		x	x	x	x
Efficiency correction for sample self-attenuation	x		x	x	x	x	x
Coincidence summing effects when analyzing	x	X ^a		x	x	x	X
Identification of radionuclides		X Þ	x	x		X Þ	

Nuclear Instruments and Methods in Physics Research.

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

Volume 536, Issues 1-2, 1 January 2005, Pages 196-210

^a Partial failure due to absence of natural radionuclides in the databases that come with the program.

^b Failure with respect to false hits due to inability to recognize sum peaks.

Принципиально новый подход к анализу спектрометрической информации

- В процессе обработки спектр рассматривается как единый объект, состоящий из набора гамма-линий конечного числа радионуклидов.
- Такой подход, в отличие от традиционных, позволяет корректно учитывать интерференцию спектральных пиков различных радионуклидов со сложными схемами распада.
- В том числе многочисленных пиков, не связанных напрямую с гаммапереходами: пики сумм при совпадениях и пики вылета одного и двух аннигиляционных квантов.

- Для каждого обработанного спектра рассчитывается параметр «коэффициент качества», значение которого при идеальной обработке спектра равняется единице.
- Филичие значения коэффициента качества от единицы однозначно указывает на определенные некорректности в обработке спектра.
- ФОБЫЧНО ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЦЕНКИ ПРАВИЛЬНОСТИ ОБРАБОТКИ ВИЗУАЛЬНЫЙ ПРОСМОТР СПЕКТРА В ЦЕЛОМ РЯДЕ СЛУЧАЕВ НЕ ПОЗВОЛЯЕТ ОЦЕНИТЬ КОРРЕКТНОСТЬ ПРОВЕДЕННОЙ ОБРАБОТКИ.

- Для каждого спектра определяется ранжированный по степени возможного присутствия в этом спектре список радионуклидов.
- Пользователь имеет возможность самостоятельно формировать итоговый список радионуклидов для текущего обрабатываемого спектра или серии однотипных спектров.
- Этой возможностью следует, в частности, воспользоваться в ситуации, когда значение «коэффициента качества» отличается от единицы.

- В ПМК GeSAS используются специальные алгоритмы, позволяющие корректно обрабатывать спектры с малой статистикой, поскольку традиционно применяемые алгоритмы обработки спектров дают в этом случае неверные результаты.
- При отсутствии в спектре выраженных пиков данного радионуклида предусмотрена возможность корректно оценивать верхний предел его активности в образце с учетом вкладов других радионуклидов и условий измерения.

Все промежуточные результаты анализа сопровождается раздельной оценкой статистических и систематических погрешностей.

- **корректный расчет погрешности итогового результата**
- в традиционно применяемых алгоритмах вычисления погрешности раздельная оценка не проводится, что может привести к неверным результатам
- средства планирования измерений, позволяющие по данному измеренному спектру оценивать экспозицию, требующуюся для достижения заданной точности результатов, и, наоборот, оценивать точность, которая будет достигнута при заданной экспозиции
- «Методические указания МУ2.6.1.25-2000. Дозиметрический контроль внешнего профессионального облучения. Общие требования»:

Форма представления результатов РК регламентируется соответствующей методикой. При этом *обязательным* является указание:

оценки (полной) абсолютной неопределенности контроля при Р=0.95;

оценки статистической (случайной) неопределенности измерений.

- При определении активностей радионуклидов в измеряемых образцах
- При калибровке спектрометра по эффективности. Это особенно важно для измерения проб в «близкой геометрии» на детекторах большого объема, т.к. позволяет, не ограничиваясь при калибровках «некаскадными» радионуклидами, использовать большее количество источников, т.е. большее количество экспериментальных данных, и обеспечить тем самым высокую точность калибровки, а также расширить энергетический диапазон калибровки.

Для учета эффектов каскадного суммирования - КС в состав ПМК GeSAS включены:

- Метод учета эффектов КС и вычислительные алгоритмы для расчета величины эффектов КС.
- Средства учета КС в программах анализа спектров и калибровки спектрометров.
- Наборы ядерных данных для расчета КС.
- Методы и программы создания наборов ядерных данных, используемых в дальнейшем для расчета КС и развития соответствующих библиотек.
- Вспомогательные программы для расчета величины эффектов КС.

- средства коррекции поглощения гамма-квантов в объемных образцах различной плотности и учета различия этого поглощения в измеряемых и калибровочных образцах.
- средства учета химического состава объемных образцов и учета различия химического состава измеряемых и калибровочных образцов.

Коррекция влияния плотности объемного образца на эффективность регистрации гамма-квантов.

$$D(\rho,E) = \frac{\int_{0}^{H} \varepsilon(E,x) * \exp(-\mu(E) * \rho * x) dx}{\int_{0}^{H} \varepsilon(E,x) dx}$$

 $D(\rho, \rho 0, E) = D(\rho, E) / D(\rho 0, E)$

1. $\epsilon(E/x) = \text{const}$ H=Heff $DR(\rho,E) = \frac{1 - \exp(-\mu(E) * \rho * Heff)}{1 - \exp(-\mu(E) * \rho 0 * Heff)} * \frac{\rho 0}{\rho}$ **2.** $\epsilon(x) = \epsilon(0)^* \exp(-\alpha^* x).$ $DR(\rho,E) = \frac{\mu^* \rho 0 + \alpha}{\mu^* \rho + \alpha} * \frac{1 - \exp(-(\mu^* \rho + \alpha) * H)}{1 - \exp(-(\mu^* \rho 0 + \alpha) * H)}$ при $E \to \infty, \mu \to 0, D(\rho,E) \to 1, DR(\rho,E) \to 1,$

при $E \rightarrow \infty, \mu \rightarrow 0, D(\rho, E) \rightarrow 1, DR(\rho, E) \rightarrow 1,$ при $E \rightarrow 0, \mu \rightarrow \infty, D(\rho, E) \rightarrow 0, DR(\rho, E) \rightarrow \rho/\rho 0.$

Значения параметров моделей коррекции плотности источника.

контейнер	детектор	Модель	1	Модел	њ 2
		Heff, см	χ² /F	$lpha$, cm $^{ extsf{-1}}$	χ^2 /F
A1	D5	1.92 ± 0.14	0.93	1.06 ± 0.12	0.89
	D6	1.66 ± 0.20	1.22	0.95 ± 0.20	1.22
	D7	1.55 ± 0.12	0.87	0.71 ± 0.12	0.95
	среднее	1.70 ± 0.12		0.90 ± 0.22	
A3	D5	2.40 ± 0.18	0.69	0.71 ± 0.08	0.72
	D6	2.35 ± 0.16	0.90	0.73 ± 0.08	0.97
	D7	2.15 ± 0.14	1.16	0.81 ± 0.08	1.26
	среднее	2.28 ± 0.16		0.75 ± 0.06	

Зависимость коэффициента поправки на плотность от энергии при плотности образца 1.5 г/см³

Зависимость погрешности определения коэффициента поправки на плотность от энергии при плотности образца 1.5 г/см³

Зависимость коэффициента поправки на плотность от энергии при плотности образца 0.5 г/см³

Зависимость погрешности определения коэффициента поправки на плотность от энергии при плотности образца 0.5 г/см³

Международные учения

радионуклидных лабораторий МСМ ДВЗЯИ, 2002 г.

Нуклид	Паспортная	а активность	Активность, полученная при помощи программы GeSAS		
	А, Бк	±2σ, %	А, Бк	±2σ, %	
²¹⁰ Pb	335.01	4.80	357	6.0	
¹³⁷ Cs	6.78	2.30	6.70	4.4	
¹²⁴ Sb	105.71	3.26	99.9	6.5	
¹²⁵ Sb	7.05	2.22	7.31	7.1	
¹⁵⁴ Eu	6.88	2.62	7.00	8.0	
¹⁵⁵ Eu	6.81	3.94	6.55	9.5	
²⁰⁷ Bi	12.80	2.50	11.7	6.8	
¹³⁴ Cs	6.80	2.24	6.88	10	
²² Na	6.92	1.13	7.52	8.9	